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K2Mem: Discovering Discriminative K-mers from
Sequencing Data for Metagenomic Reads

Classification
Davide Storato, Matteo Comin

Abstract—The major problem when analyzing a metagenomic sample is to taxonomically annotate its reads to identify the species
they contain. Most of the methods currently available focus on the classification of reads using a set of reference genomes and their
k-mers. While in terms of precision these methods have reached percentages of correctness close to perfection, in terms of recall (the
actual number of classified reads) the performances fall at around 50%. One of the reasons is the fact that the sequences in a sample
can be very different from the corresponding reference genome, e.g. viral genomes are highly mutated. To address this issue, in this
paper we study the problem of metagenomic reads classification by improving the reference k-mers library with novel discriminative
k-mers from the input sequencing reads. We evaluated the performance in different conditions against several other tools and the
results showed an improved F-measure, especially when close reference genomes are not available.
Availability: https://github.com/CominLab/K2Mem

Index Terms—Metagenomic Reads Classification, Discriminative k-mers, Minimizers.
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1 INTRODUCTION

Metagenomics is the study of the heterogeneous mi-
crobes samples (e.g. soil, water, human microbiome) directly
extracted from the natural environment with the primary
goal of determining the taxonomical identity of the mi-
croorganisms residing in the samples. It is an evolutionary
revise, shifting focuses from the individual microbe study
to a complex microbial community. The classical genomic-
based approaches require the prior clone and culturing for
further investigation [1]. However, not all Bacteria can be
cultured. The advent of metagenomics succeeded to bypass
this difficulty. Microbial communities can be analyzed and
compared through the detection and quantification of the
species they contain [2]. Then, the inner structure of a micro-
bial community can be unveiled using ecological measures
such as species diversity, richness and uniformity. In this
paper, we will focus on the detection of species in a sample
using a set of reference genomes, e.g. Bacteria and Virus.
The reference-based metagenomics classification methods
can be broadly divided into three categories: (1) alignment-
based methods, (2) marker-based methods, where certain
specific marker sequences are used to identify the species.
(3) sequence-composition-based methods, which are based
on the nucleotide composition (e.g. k-mers usage). Tradi-
tionally, the first strategy was to use BLAST [3] to align each
read with all sequences in GenBank. Later, faster methods
have been deployed for this task, popular examples are
MegaBlast [4] and Megan [5]. However, as the reference
databases and the size of sequencing data sets have grown,
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alignment has become computationally infeasible, leading
to the development of metagenomics classifiers that provide
much faster results.

Marker-based methods use clade specific marker genes
as a taxonomic reference, so that the identification of one
of these genes can be used as evidence that a given taxa is
present. This allows faster assignment because the database
of marker genes is far smaller than a database of the full
genomes for all species. Popular examples of marker gene
methods are MetaPhlAn [6], Phylosift [7].

The fastest and most promising approaches belong to
the composition-based one [8]. The basic principles can be
summarized as follows: each genome of reference organisms
is represented by its k-mers, and the associated taxonomic
label of the organisms, then the reads are searched and
classified throughout this k-mers database. For example,
Kraken [9] constructs a data structure that is an augmented
taxonomic tree in which a list of significant k-mers are
associated to each node, leaves and internal nodes. Given a
node on this taxonomic tree, its list of k-mers is considered
representative for the taxonomic label and it will be used for
the classification of metagenomic reads. CLARK [10] uses a
similar approach, building databases of species- or genus-
level specific k-mers, and discarding any k-mers mapping
to higher levels. The precision of these methods is as good
as MegaBlast [4], nevertheless, the processing speed is much
faster [8]. Several other composition-based methods have
been proposed over the years. In [11] the number of unas-
signed reads is decreased through reads overlap detection
and species imputation. Centrifuge and Kraken 2 [12], [13]
try to reduce the size of the k-mer database with the use
respectively of FM-index and minimizers. The sensitivity
can be improved by filtering uninformative k-mers [14], [15]
or by using spaced seeds instead of k-mers [16].

The major problem with these reference-based metage-

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on December 13,2021 at 16:04:15 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/CominLab/K2Mem


1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3117406, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

2

nomics classifiers is the fact that most Bacteria found in en-
vironmental samples are unknown and cannot be cultured
and separated in the laboratory [17]. As a consequence, the
genomes of most microbes in a metegenomic sample are
taxonomically distant from those present in existing refer-
ence databases. This fact is even more important in the case
of viral genomes, where the mutation and recombination
rate is very high and as a consequence, the viral reference
genomes are usually very different from the other viral
genomes of the same species.

For these reasons, most of the reference-based metage-
nomics classification methods do not perform well when the
sample under examination contains strains that are different
from the genomes used as references. Indeed, e.g. CLARK
[10] and Kraken [9] report precisions above 95% on many
datasets. On the other hand, in terms of recall, i.e. the per-
centage of reads classified, both Clark and Kraken usually
show performances between 50% and 60%, and sometimes
on real metagenomes, just 20% of reads can be assigned to
some taxa. In this paper we address this problem and we
propose a metagenomics classification tool, named K2Mem1,
that is based, not only on a set of reference genomes but also
it uses discriminative k-mers from the input metagenomics
reads to improve the classification. The basic idea is to
add memory to a classification pipeline, so that previously
analyzed reads can be of help for the classification.

2 METHODS

To improve the metagenomics classification our idea is
based on the following considerations. All reference-based
metagenomics classification methods need to index a set
of reference genomes. The construction of this reference
database is based on a set of genomes, represented by its
k-mers (a piece of the genome with length k), and the taxo-
nomic tree. For example, Kraken [9] constructs a data struc-
ture that is an augmented taxonomic tree, in which a list of
discriminative k-mers is associated with each node, leaves
and internal nodes. Given a node on this taxonomic tree, its
list of k-mers is considered representative for the taxonomic
label and it is used for the classification of metagenomic
reads. However, for a given genome only a few of its k-mers
will be considered discriminative. As a consequence, only
the reads that contains these discriminative k-mers can be
classified to this species.

Given a read with length n, each of its n− k + 1 k-mers
have the first k − 1 bases in common with the previous k-
mer, except the first k-mer. Furthermore, it is possible that
reads belonging to the input sequencing data can have many
k-mers in common.

As can be seen in Fig. 1, in this example we have three
reads containing the same k-mer (in red) but only one is
classified thanks to the presence in the read of a discrim-
inative k-mer (in green), with a taxonomy ID associated,
contained in the classifier’s database. The second read could
not be classified because none of its k-mers are in the k-
mer reference library, as there is a mutation (in bold) with
respect to the reference genome. However, the k-mers of the
first read, that are not present in the classifier’s database,

1. A preliminary version of this work appeared in the proceedings of
ISBRA 2020 [18].

can belong to the same species to which the read classified
belongs to. With reference to Fig. 1, if we associate to the
shared k-mer (the red one) the taxonomy ID of the first read
then, we can classify the other two reads. Thus, using the
above considerations, one can try to extend the taxonomy
ID of a classified read to all its k-mers.

The idea is to equip the classifier with memory from
previous classifications, thus adding novel discriminative
k-mers found in the input sequencing data. To obtain this
memory effect, one needs to modify a given classifier with
additional data structures and a new classification pipeline.
Note that, this idea can be applied to any reference-based
metagenomics classifiers that are based on a database of k-
mers. In this paper we choose to use Kraken 2 [13], that was
recently introduced, and that is reported to be the current
state of the art. Before to describe our classification tool, for
completeness here we give a brief introduction of Kraken 2
to better understand our contribution.

2.1 Background on Kraken 2

Kraken 2 is an improved version of the classifier Kraken
[9] regarding memory usage and classification time. These
improvements were obtained thanks to the use of the mini-
mizers and a probabilistic compact data structure, instead of
the k-mers and a sorted list used in Kraken. Given a string
s of length k, and a value l, with l < k. The minimizer
(k, l) of the string s is the smallest l-mer, according to
the alphabetical order, that appears in s. The minimizers
method is very versatile and is used, instead of k-mers, in
various ways in many bioinformatics programs to reduce
the total computational cost or the memory usage, see [19]
for a review.

Instead of utilizing the complete genome as reference,
Kraken 2 considers only its minimizers (k = 35, l = 31),
thus a genome sequence is alternatively represented by a set
of l-mers, which plays a role of efficiently indexing a large
volume of target-genomes database, e.g., all the genomes
in RefSeq. This idea is borrowed from alignment-free meth-
ods [20] and some researchers have verified its availabil-
ity in different applications. For instance, the construction
of phylogenetic trees, traditionally is performed based on
multiple-sequence alignment, whereas with alignment-free
methods it can be carried out on the whole genomes [21],
[22]. Recently some variations of k-mers-based methods
have been devised for the detection of enhancers in ChIP-
Seq data [23], [24], [25], [26], [27], entropic profiles [28],
[29], and NGS data compression [30], [31], [32]. Also, the
assembly-free comparison of genomes and metagenomes
based on NGS reads and k-mers counts has been investi-
gated in [33], [34], [35], [36]. For a comprehensive review
of alignment-free measures and applications we refer the
reader to [20].

At first, Kraken 2 needs to build a database starting
from a set of reference genomes. To build the database
Kraken 2 downloads from the NCBI the taxonomy and
reference sequences libraries required. With the taxonomy
data, Kraken 2 builds a tree where each node is associated
to a taxonomy ID. In each tree node, a list of minimizers is
stored that is useful for the classification. Precisely, for each
minimizer (k=35, l=31) if it is unique to a reference sequence
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Fig. 1. Example of a reference-based metagenomics classifier behaviour. In red the k-mer in common between the reads, in green the k-mer
associated to a species’ taxonomy ID (in this case 821) present in the classifier’s database, and in bold the mutations’ positions in the reads. A
taxonomy ID of zero indicates that the classifier wasn’t able to classify the read.

then, it is associated with the node with the sequence’s
taxonomy ID. Instead, if the minimizer belongs to more
than one reference sequence then, the minimizer is moved to
the node with taxonomy ID equals to the Lowest Common
Ancestor (LCA) of the two sequences it belongs. All the
minimizer-taxonomy ID pairs are saved in a probabilistic
Compact Hash Table (CHT) which allows a reduction of
memory with respect to Kraken. Kraken 2 uses also a spaced
seed mask to the minimizer and calculates a compact hash
code, which is then used as a search query in its Compact
Hash Table, see [13] for more details.

Once the database is built, Kraken 2 classifies the input
reads in a more efficient manner than Kraken due to the
smaller number of accesses to the CHT map. This is due to
the fact that only distinct minimizers from the read trigger
the research in the map. When the minimizer is queried in
the compact table, the node ID of the augmented tree is
returned, and the counter in the node is increased. Once all
the minimizers have been analyzed, the read is classified by
choosing the deepest node from the root with the highest-
weight path in the taxonomy tree. The use of spaced seeds
and minimizers allow Kraken 2 to improve the sensitivity.

2.2 K2Mem
Here we present K2Mem (Kraken 2 with Memory) a clas-
sifier based on Kraken 2. In order to implement the idea
explained above, K2Mem needs to detect new discrimi-
native minimizers, to store them in memory and to use
this additional information in the classification of reads.
The new classification pipeline of K2Mem discovers novel
discriminative minimizers from the input sequencing data
and it saves them in a map of additional minimizers.

The data structure used to store these additional min-
imizers is an unordered map that stores pairs composed
of the novel discriminative minimizer, not present in the
classifier’s database, and the taxonomy ID associated to the
read that contains the minimizer. An unordered map is an
associative container that contains key-value pairs with a
unique key. The choice of this structure is due to the fact
that search, insertion and removal of elements have average
constant-time complexity. Internally, the elements are not
ordered in any particular order but are organized in buckets.
Which bucket an element is placed into depends entirely
on the hash of its key. This allows fast access to the single
element, once the hash is computed, it refers to the exact
bucket where the element has been inserted. The key and
value are both 64-bit unsigned integer. This choice was
made to keep the complete minimizers (l=31) on the map
without loss of information due to the CHT hash function

and to contains the taxonomy ID in case the number of
taxonomy tree nodes increases in future.

K2Mem has two main steps, in the first phase all reads
are processed and novel discriminative minimizers are dis-
covered and stored in the additional minimizers map. In the
second phase, the same input reads are re-classified using
the Compact Hash Table and also the additional minimizers
obtained in the first phase.

An overview of the first phase, the discovery of novel
discriminative minimizers, is reported in Fig. 2. The popu-
lation of the additional minimizers map works as follow:
for each read, its minimizers (k=35, l=31) are computed
one at a time and, for each of them, the Compact Hash
Table (CHT) is queried (1). If it returns a taxonomy value
equal to zero, then the additional map is queried if it is not
empty (2). If the minimizer is not found in the additional
minimizers map, this means that the minimizer is not in
the Kraken 2’s database and no taxonomy ID has been
assigned to it or is the first time the minimizer is found.
In that case, the minimizer is added to a temporary list
of not taxonomically assigned minimizers (3). Instead, if
the CHT or the additional minimizers map query returns
a taxonomy ID not equal to zero, then the taxonomy ID
count is updated (4). Then, the read is classified (5), based
on the highest-weight path in the taxonomy tree, and the
resulting taxonomy ID is checked if it is at the species level
or below (6). If it is, then the minimizers in the unknown
minimizers list are added to the additional minimizers map
with key the minimizer and value the taxonomy ID obtained
by the read classification. If the minimizer is already in the
additional map the LCA of the input and stored taxonomy
IDs value is saved. Instead, if the taxonomy ID obtained
after the read classification is at a level above the species
then, the minimizers are not added and the list is emptied.
In the first phase, this procedure is repeated for all the reads
in the dataset.

Following the example in Figure 1, let’s assume that
we are processing the first read, and that the first k-mer
is a minimizer. The first minimizer, in red, is not present in
Kraken 2’s database, and the additional minimizers map is
initially empty. Thus, this minimizer is detected in phase 3
and added to the unknown minimizers list. Next, in phase
5, the read is classified at species level, with taxonomy ID
of 821. Finally, in phase 6 the newly discovered minimizer
and its taxonomy ID are added to the additional minimizers
map. The pseudocode for the discovery of novel discrimi-
native minimizers is reported in Algorithm 2.1.

Then, once the population of the additional minimizers
map is completed, in the second phase all reads are re-
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Fig. 2. An overview of K2Mem and the discovery of additional minimizers.

foreach read R ∈ input file do
foreach minimizer m ∈ R do

taxon← CHT(m);
if taxon = 0 and AM not empty then
// Additional Map (AM)

taxon← AM(m);

if taxon = 0 then // Unknown Minimizer
List (UML)

UML← m;

read taxon← compute taxon;
if read taxon is species then

foreach m ∈ UML do
AM← <m, read taxon>;

Algorithm 2.1: Discovery of additional minimizers
phase pseudocode.

foreach read R ∈ input file do
foreach minimizer m ∈ R do

taxon← CHT(m);
if taxon = 0 and AM not empty then
// Additional Map (AM)

taxon← AM(m);

read taxon← compute taxon;

Algorithm 2.2: Classification phase pseudocode.

classified. In this phase the classification only uses the CHT
and the additional minimizers map to classify the reads
in the same dataset, but without to update the additional
map content. With these additional minimizers, the dataset
is processed to obtain a better classification. K2Mem starts
querying the CHT for each minimizer in the read (1). If the
minimizer is not found, the additional map is queried (2).
If the minimizer is not present in the latest map, a taxon of
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zero is assigned to the minimizer. Instead, if in the CHT or
additional map the minimizer is found, the associated taxon
is returned and the taxon’s number of hit is updated (4).
Once all the read’s minimizers are analyzed the read’s taxon
is computed (5), classifying the read. When K2Mem ends, it
generates the same output files as Kraken 2. The pseudocode
of the classification phase is reported in Algorithm 2.2.

3 RESULTS

To analyze the performance of K2Mem we compare it with
five of the most popular classifiers: Centrifuge [12], CLARK
[10], Clior [11], Kraken [9], Kraken 2 [13], and KrakenUniq
[37]. We test all these tools on several simulated datasets
with different Bacteria and Viral genomes from NCBI and
on two real datasets. The experimental setup is described in
the next section.

3.1 Experimental setup
In this section we briefly describe the strain exclusion ex-
periment, the datasets, and the evaluation measures used
to compare the performance of K2Mem with the other
classifiers. To assess the performance of K2Mem we follow
the experimental setup of Kraken 2 [13], that is the strain
exclusion experiment.

3.1.1 Strain exclusion
The strain exclusion experiment’s data were generated as
done by the Kraken 2’s author in [13]. Specifically, the
generation of these data occurs in the way explained below.

It stars by downloading the reference genomes and
the taxonomy from the NCBI’s database. The reference
genomes are generated from the Archaeal, Bacteria, and
Viral genomes. From the NCBI’s taxonomy, the files con-
taining the taxonomic tree and the associations of GenBank
identifier to taxonomy ID are downloaded. From these
genomes a subset is selected containing 40 Bacteria genomes
and 10 Viral genomes. These elements will be the origin
strains for the strain exclusion experiment, used to create
the simulated datasets. At this point a reference genomes
set is created taking all the data downloaded from the
NCBI and removing the origin strains previously chosen.
Once the reference genomes set is created, Mason 2 [38]
is used for simulate 100 bps paired-end Illumina sequence
data from the origin strains. Specifically, the Mason 2’s
mason simulator command is used with Illumina error
profile for the simulation of the sequence’s errors. That
means that the generated sequences contain an error rate of
0.4% mismatches, 0.005% insertions and 0.005% deletions.
The reads obtained from the origin strains are concatenated
in a single file and the truth file of the simulated reads
is generated for each library. This setup tries to mimic a
realistic scenario in which a reference genome is available,
but the sequenced genome is a different strain from the same
species.

3.1.2 Datasets
Different simulated and real metagenomics datasets are
used to compare and evaluate K2Mem’s performance. Ten
simulated datasets were created using the origin strains

obtained from the strain exclusion experiment explained
above. Of these datasets, seven are built by varying the
number of reads from 50k to 100M. These datasets are used
to test the impact of sequencing coverage on the perfor-
mance of the tools under examination. We also constructed
other three datasets, all with the same number of reads
100M, but with different mutation rates from the original
strains: 2%, 5%, and 10%. With these datasets, we evaluate
another scenario in which a close reference genome is not
available.

In addition to the simulated datasets, two real datasets
are used to test K2Mem performance. These datasets are the
SRR1804065 and the marine raw long reads, downloaded
from the NCBI and CAMI2 [39] website respectively. The
real metagenome SRR1804065 is a DNA tool sample from
the Human Microbiome Project (HMP), and it has been
used for testing in many studies [14], [40], [41]. Since the
“ground truth” is not available for a real metagenome we
used the same evaluation procedure as in [40] and other
studies. Solely with the purpose to evaluate our method
on real data, we use BLAST to map the reads against all
reference genomes, and filter out the reads that maps on two
or more genomes. After this filter we keep the reads that can
be mapped uniquely to one genome, with a high confident
match of at least 95% identity. These reads will be used as
”ground truth” for testing. Since this filtering step can alter
the abundance ratios of species, on real datasets we do not
evaluate the PCC of the abundance profile. The resulting
dataset SRR1804065 comprises 5.5M reads of length 100
and 2537 species, whereas the marine dataset contains 1.1M
reads of length between 1000 and 3000 bases and 4956
species. In Table 1 is presented a summary of the simulated
and real datasets used for testing.

Dataset No. of reads reads length No. of species

Simulated (x10) [50k-100M] 100 40 Bacteria 10 Virus
CAMI2 Marine 1150123 [1000-3000] 4956

SRR1804065 5500983 100 2537
TABLE 1

A summary of the datasets used for testing: 10 simulated dataset (7
varying the number of reads and 3 varying the mutation rate); two real

datasets.

3.1.3 Evaluation measures
To compare K2Mem with the other tools we use the same
evaluation metrics as in [13], [14]; precisely we use Sensitiv-
ity, Positive Predicted Value (PPV), F-measure, and Pearson
Correlation Coefficient (PCC) of the abundance profile. To
compute these measures we use the same methodology
used in [13] as following explained. We firstly compare the
classifier’s results with the truth file of the dataset classified,
at a specific taxonomy level, to obtain the number of reads
belonging to the following categories: true positive (TP),
false negative (FN), and false positive (FP). A read belongs
to the TP category if its taxonomy classification rank is the
same or is a descendant of the truth rank. A read belongs to
the FN category if the classifier fails to classify the sequence
or if its taxonomy classification rank is an ancestor of the
truth rank. Lastly, a read belongs to FP if its classification is
incorrect; that is, it is not in the true taxonomy of origin, it
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is not an ancestor or a descendant of the truth rank. Using
these categories we define the sensitivity as the proportion
of the number of reads correctly classified over the total
number of reads. We define the PPV as the proportion of
the number of reads correctly classified among the number
of classified reads. The F-measure is defined as the harmonic
mean of sensitivity and PPV. The Pearson Correlation Coef-
ficient is defined in the following manner: Given paired data
{(x1, y1), . . . , (xn, yn)} consisting of n pairs, PCC is defined
as:

rxy =

∑n
i=1(xi − x) · (yi − y)√∑n

i=1(xi − x)2 ·
√∑n

i=1(yi − y)2
. (1)

Where: n is the number of species, xi, yi are the number
of species i correctly classified and present in ground truth
respectively, and x and y is the sample mean of x and y
respectively. The sample mean of x (analogously of y) is
computed as: x = 1

n ·
∑n

i=1 xi. The Pearson Correlation
Coefficient reflects the ability of a classifier to detect the
correct abundance rate of species.

3.2 Performance Evaluation
In this section, we analyze the performance results at the
genus and species levels of K2Mem with respect to the other
classifiers. All tools are used with the default parameters
and run in multithreading using 16 threads. Their databases
are built using the same set of reference genomes obtained
from the strain exclusion experiment.
The obtained results are reported below in different figures
to better understand the performance and the impact of the
different configurations.

3.2.1 Overall Results for Bacteria and Virus
In the first experiments we test the overall performance of
all tools on the largest simulated dataset with 100M reads.
We analyze the 100M dataset as it is the most relevant case
due to its dimension. On this dataset Clior runs out of
memory on a machine with 2 TB of RAM.

In Figure 3 and 4 are shown the full results obtained with
the 100M reads dataset analyzed at genus level for Bacteria
and Virus respectively.
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Fig. 3. Bacteria evaluation at genus level on the 100M reads dataset.

As it can be seen in Figure 3, with Bacteria K2Mem
obtains an F-measure improvement of at least 0.5 percentage
points (pps) respect to the closest competitor, Kraken 2, and
the other classifiers. This improvement is due to an increase

of sensitivity of at least 2 pps despite a worsening of the PPV
of about 1 pps respect to the other tools. Moreover, K2Mem
obtains the best PCC value with an improvement of at least
0.1 pps respect to Centrifuge and Kraken 2.
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Fig. 4. Viruses evaluation at genus level on the 100M reads dataset.

On the viral dataset, as it can be observed in Figure 4,
K2Mem obtains an F-measure improvement of almost 40
pps respect to Kraken 2 and the other tools. This improve-
ment is due to an increase of sensitivity, whereas the PPV
of all tools is to close to 1. Moreover, K2Mem shows the
best PCC with an improvement of about 13 pps respect to
Centrifuge and Kraken 2.

Fig. 5. Bacteria evaluation at species level on the 100M reads dataset.

Fig. 6. Viruses evaluation at species level for the 100M reads dataset.

In Figure 5 and Figure 6 are shown the full results
obtained with 100M reads dataset analyzed at the species
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level for Bacteria and Virus, respectively. The classification
at species level is clearly more difficult than at genus level,
and the results reported are lower for all tools with respect
to the previous Figures.

As can be seen in Figure 5, on the Bacteria dataset
K2Mem obtains a balanced sensitivity improvement and
PPV worsening that gives a slight worsening in F-measure
with respect to the best method, precisely of at most 0.4
pps. However, the F-measure value is very close to the
other tools, and slightly better than Kraken 2. A Similar
consideration applies to the PCC values.

On the viral dataset, as can be seen in Figure 6, K2Mem
shows an F-measure improvement of at most 20 pps respect
to the other tools. This improvement is due to sensitivity
improvement. Furthermore, K2Mem gives the best PCC
value with a difference of at least 10 pps respect to the
other tools. In summary, with the results reported above,
we can observe that thanks to the additional information
provided by the new discriminative minimizers K2Mem
obtains a moderate improvement in Bacteria’s classification
and a significant improvement in Virus’ classification.

3.2.2 Results varying the number of reads
In these experiments we evaluate the impact of sequencing
coverage by varying the number of reads in the dataset from
50k to 100M reads. In the following Figures we report the
F-measure as the best means of comparison. In Figure 7
and 8 are shown the F-measure values, evaluated at genus
level, obtained varying the number reads in the dataset for
Bacteria and Virus respectively. For Bacteria, as it can be
seen in Figure 7, K2Mem gets better F-measure values than
the other tools as the number of reads increases; obtaining
improvements up to almost 1 pps. This improvement is
given mainly from the increase of sensitivity.

Fig. 7. F-measure values for Bacteria at genus level varying the number
of reads.

For Virus, as it can be seen in Figure 8, K2Mem
achieves greater F-measure improvement than Bacteria, al-
ways thanks to an increase of the sensitivity. It is interesting
to note that the performances of all other tools are indepen-
dent of the size of the dataset.

In Figure 9 and 10 are shown the F-measure values,
evaluated at the species level, obtained varying the number
of reads in the dataset for Bacteria and Virus respectively.

For Bacteria, as shown in Figure 9, K2Mem does not re-
port an improvement on larger datasets and the F-measurse
remains constant, in line with the other tools.

Fig. 8. F-measure values for Virus at genus level varying the number of
reads.

Fig. 9. F-measure values for Bacteria at species level varying the num-
ber of reads.

With Virus, as can be seen in Figure 10, K2Mem obtains
an improvement of the F-measure value, around 20 pps,
respect to Kraken2 and the other tools. This improvement
is given mainly from sensitivity increasing. Clior shows
similar performance on the Viral datset, Figures 8 and
10. However, the improvement of the F-measure is lower,
moreover Clior can not handle large datasets with 12.5M
reads or more. In summary, we can observe that for K2Mem
the greater the amount of data the better the classification

Fig. 10. F-measure values for Virus at species level varying the number
of reads.
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results, due to a greater possibility of finding new discrim-
inative minimizers. This behaviour is more evident on the
Viral data where the number of unclassified reads is higher
for all the other tools.

3.2.3 Results for Strains distant from the reference
genomes
In this experiments we test the realistic situation in which
the genomes sequenced do not have a close relative in the
database of reference genomes. In order to evaluate this
scenario we use again the strain exclusion setup, but this
time the reads are simulated with a different mutation rate
with respect to the reference strain genomes.
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Fig. 11. F-measure values for Bacteria at genus level varying the muta-
tion rate.
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Fig. 12. F-measure values for Virus at genus level varying the mutation
rate.

In Figure 11 and 12 are shown the F-measure values
obtained for the 100M reads dataset while varying the mu-
tation rate, for Bacteria and Virus respectively. The mutation
rate respect to the origin strains rages between 0.4% to 10%.

As it can be seen in Figure 11, the first observation is that
the performance of all tools decreases as the mutation rate
increases. This is expected because the reference genomes
are no longer similar to the genomes in the sample data.
However, K2Mem obtains the best F-measure values in all
cases. Moreover, the F-measure improvement increases up
to 2.5 pps w.r.t. Centrifuge and 7 pps with Kraken 2, as the
mutation rate increases.

With Virus, as reported in Figure 12, K2Mem has the
same behaviour described for the Bacteria, but with a bigger
performance gap up to 45 pps respect to Kraken 2. In Figure
13 and Figure 14 are shown the F-measure values, evaluated

Fig. 13. F-measure values for Bacteria at species level varying the
mutation rate.

Fig. 14. F-measure values for Virus at species level varying the mutation
rate.

at the species level, obtained varying the mutation rate in
the Bacteria and Virus dataset, respectively.

For the Bacteria, as can be seen in Figure 13, K2Mem has
the same behaviour explained at genus level.

As reported in Figure 14, with Virus at the species level,
K2Mem has the same performance described for the Virus
evaluated at the genus level. That is, K2Mem obtains best
F-measure values w.r.t. the other tools with a difference of
at least 20 pps.

In summary, the increase in the mutation rate leads
to worse performance for all tools as expected. However,
K2Mem is the classifier that has suffered less from the
presence of mutations in the sample, and it achieved the
best performance over all other methods. Moreover, this
behaviour is consistent over all configurations for both
species and genus levels and both Bacteria and Virus.

3.2.4 Results on real datasets
In this section we analyze the performance of all tools on
two real datasets: SRR1804065 and CAMI2 marine.

In Figure 15 and Figure 16 are shown the results ob-
tained with the CAMI2 marine and SRR1804065 datasets
respectively, analyzed at the genus level. Hereafter the PCC
values are not evaluated since they can be biased by the
ground truth construction.

As it can be seen in Figure 15, with the marine dataset
K2Mem is the second best tool with a worsening in F-
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Fig. 15. Evaluation at genus level on the CAMI2 marine datasets.

Fig. 16. Evaluation at genus level on the SRR1804065 datasets.

measure of 5 pps with respect to Centrifuge, the first one,
and an improvement of at least 2 pps with respect to the
remaining classifiers, including Kraken 2. On the marine
dataset, with its long reads, we think that the Centrifuge’s
better performance are due to the fact that it searches k-
mers of variable length, as opposed to the other tools based
on fixed length k-mers.

With the SRR1804065 dataset, as reported in Figure 16,
K2Mem obtains the best F-measure value with an increment
of at least 20 pps respect to most of the other tools. The
improvement is due to a sensitivity increasing of at least
30 pps and a PPV decreasing of at most 20 pps. On this
dataset Clior shows performance similar to K2Mem, only
slightly lower. However, the amount of RAM (780 GB) and
time required by Clior is extremely high, see Figure 18.

In summary, on these two real datasets K2Mem obtains
very good results, and it always improves the performance
of Kraken 2.

3.2.5 Execution time and memory usage
In this section we evaluate the computational resources
required for all tools. The execution time and memory
usage of each tool during the classification of the simulated
datasets are shown in Figure 17. For this analysis, the
execution time and memory usage values are reported for
the largest simulated dataset with 100M reads.

In Figure 18 are reported the execution time and memory
usage for the real dataset SRR1804065. For the SRR1804065
dataset, K2mem has a behaviour similar to that of the
100M reads dataset, with a low memory footprint and
one of the best execution time. The execution time of
K2Mem, as expected, it is higher than Kraken 2 due to
the new discriminative minimizers search phase. However,
the classification time is in line with the other tools. As for
the memory usage K2Mem requires slightly more memory
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Fig. 17. Execution time and memory usage for the simulated dataset
with 100M reads.

Fig. 18. Execution time and memory usage for the SRR1804065
dataset.

than Kraken 2, due to the new map. For example, on the
largest dataset with 100M reads, K2Mem requires only 15
GB of RAM, whereas Kraken 2 9.98 GB. On the real dataset,
Figure 18, K2Mem uses only 11.5 GB of RAM, and Kraken
2 9.7 GB. In summary, the computing time and the memory
requirements of K2Mem are in line with the best tools.

4 CONCLUSION

We have presented K2Mem, a classifier based on Kraken 2
with a new classification pipeline and an additional map to
store new discriminative k-mers from the input sequencing
reads. The experimental results have demonstrated that
K2Mem obtains higher values of F-measure, mainly by an
improved sensitivity, and PCC respect to the most popular
classifiers thanks to the greater number of reference k-
mers available during the classification. We showed that
the performance improvement of K2Mem increases as the
size of the input sequencing data grows, or when reads
originate from strains that are genetically distinct from those
in the reference database. On real datasets K2Mem obtains
very good results, and it always improves the performance
of Kraken 2. As possible future developments it could be
interesting to increase the PPV, e.g. using unique k-mers, to
speed up the classification algorithm with a better imple-
mentation and to test other data structures, e.g. counting
quotient filter [42], to decrease the memory requirements.
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